If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y+y^2=100
We move all terms to the left:
15y+y^2-(100)=0
a = 1; b = 15; c = -100;
Δ = b2-4ac
Δ = 152-4·1·(-100)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-25}{2*1}=\frac{-40}{2} =-20 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+25}{2*1}=\frac{10}{2} =5 $
| x^2+2x-3782=0 | | 3y+4y-40=180 | | 4(k+2)=3(k+5 | | 4.5y=7020 | | 4(k+2=3(k+5 | | x+3.55=71 | | 19x+19=40-2x | | 3=(4/3x)+9 | | 5f=1/2 | | 9x2-138x-60=0 | | 2(6x+5)=-58 | | x^2+3x-3760=0 | | x/4.54=1.5 | | 25c+10=125-5c | | 6x+3=-3+4x+16 | | x^2+2x-3762=0 | | x+2x-3762=0 | | 12=9x^2 | | 9p+6=3(p+8 | | 0.37w=1.036 | | 9f=1/5 | | 3f=1/2 | | 9=3(5c-2) | | 4f=1/8 | | 4f=1/2 | | X^2+1x-12=26 | | 4y+5=2y+6 | | 2x^2+3x-2=63 | | 130+25+13x-1=180 | | 3=2x+1=13 | | 7x^2-192x=208 | | 18+24+90+2x=180 |